Higgs Bosons and b Quarks

MCTP Higgs Workshop May, 2010 Sally Dawson (BNL)

Laura Reina, Chris Jackson, Doreen Wackeroth, Chung Kao, Yili Wang, Prewit Jaiswal

SM Production Mechanisms at LHC

Production with b's very small in SM

• Information about bbH coupling must come from decays

Progress in extracting H→bb from boosted Higgs techniques [Plehn]

Higgs Couplings Very Different in MSSM

H, A couplings to d, s, b enhanced at large tan β h couplings to d, s, b enhanced at large tan β for small M_A

Relative Importance of Production Modes

 \Rightarrow At some tan β , the rates for bb \rightarrow A,H,h will be larger than those for gg \rightarrow A,H,h

 $pp, p\overline{p} \rightarrow bbH$

Rates large even at relatively small tan β

 α_{eff} from FeynHiggs with $M_{SUSY}=M_g=\mu=M_2=1$ TeV, $A_b=A_t=25$ GeV

QCD Corrections Important

- NLO corrections improve scale dependence
- NLO QCD corrections large (can't neglect them!)
- In 4 flavor number scheme:

 σ_{LO}

 σ_{NLO}

0.5

10

σ_{LO,NLO} (fb)

0.2

* Corrections don't exist in public code

 μ/μ_0

Dawson, Jackson, Reina, Wackeroth, hep-ph/0408077,0508293 Dittmaier, Kramer, Spira, hep-ph/0309204

1.0

 μ/μ_0

Residual Scheme Dependence at NLO

- Cross section proportional to b Yukawa, $\lambda_b^2 \approx \left(\frac{m_b^2}{v^2}\right)$
 - $\bullet \overline{\text{MS}}$ vs on-shell definitions of b quark mass
 - $\overline{\text{MS}}$ mass depends on physical scale: $\overline{m}_b(\mu) = m_b \left| 1 \frac{\alpha_s}{3\pi} \left(4 + 3 \ln \left\{ \frac{\mu^2}{m_s^2} \right\} \right) \right|$
 - •Difference between schemes is $O(\alpha_s^4)$

Theoretical Issues in bbh production

• Treating b quarks inclusively leads to large collinear logarithms from integration over phase space

• Expansion parameter becomes $\alpha_s \log(m_b/M_h)$

Two Schemes for PDFs

- 4 flavor number scheme (Fixed Flavor Number Scheme)
 - No b quarks in initial state
 - Lowest order process involving Higgs and b's is $gg \rightarrow bbh$
 - No kinematic approximations
- 5 flavor number scheme (Variable Flavor Number Scheme)
 - Define b quark PDFs (absorbs large logarithms)

$$b(x,\mu) = \frac{\alpha_s}{2\pi} \ln\left(\frac{\mu^2}{m_b^2}\right)_x^1 \frac{dz}{z} P_{bg}\left(\frac{x}{z}\right) g(z,\mu)$$

- Higgs produced with no p_T at lowest order $(\overline{bb} \rightarrow h)$
- Higgs p_T generated at higher orders in expansion
- Both CTEQ and MSTW use this scheme for PDFs

Re-ordering of Perturbation Theory

• 0 b tag process in 5FNS:

 $\Lambda_b = log(M_h^2/m_b^2)$

- LO: $b\overline{b} \rightarrow h = O(\alpha_s^2 \Lambda_b^2)$
- NLO: Virtual + real corrections $O(\alpha_s^3 \Lambda_b^2)$
- NLO: bg \rightarrow bh $O(\alpha_s^2 \Lambda_b)$, correction of $O(1/\Lambda_b)$
- NNLO: gg $\rightarrow b\overline{b}h O(\alpha_s^2)$, correction of $O(1/\Lambda_b^2)$
- 1 b tag process in 5FNS:
 - LO process is bg \rightarrow bh: Tree level, $O(\alpha_s^2 \Lambda_b)$
 - NLO includes new subprocess: $gg \rightarrow b\bar{b}h$, O(1/ Λ_b) correction

4FNS and 5FNS must agree at high enough order in perturbation theory

Inclusive Cross Section for $bb \rightarrow h$: 0 b tags $b\overline{b} \rightarrow h vs gg \rightarrow b\overline{b}h$

Agreement best at low M_h

M_h (GeV) S-ACOT Scheme: $\sigma_{tot} \approx \sigma_{bb} + \sigma_{sub} + \sigma_{gg}$

 σ_{sub} takes care of double counting from $g \rightarrow bb$

LHC Higgs cross section group, Freiburg, 3/10

Harlander, Kilgore, hep-ph/0304035; public code bbh@NNLO

Issues with Factorization Scale Dependence?

5FNS, $b\bar{b} \rightarrow h$ @NNLO, MSTW2008, $\sqrt{s}=7$ TeV

LHC Higgs cross section group, Freiburg, 3/10

PDF uncertainty for $bb \rightarrow h$

Large PDF uncertainty for heavy Higgs!

LHC Higgs cross section group, Freiburg, 3/10

SUSY QCD / Electroweak Corrections

• Compute in effective Lagrangian approach

Effective Lagrangian approach works to 1-3% for $b\bar{b}$ \rightarrow h for SQCD and EW effects

Dittmaier et al, hep-ph/0611353

Carena, Garcia, Nierste, Wagner, hep-ph/9912516

Bottom Line: Inclusive 0 b Tag

- Calculate SM in 5FNS to NNLO (using bbh@NNLO)
 - Find MSSM couplings from HDECAY or FeynHiggs
- μ_R uncertainty ~5%
- μ_F uncertainty ~5% for M_H > 200 GeV, up to 20% for lighter M_H
- Scheme dependence ~10-20%
- PDF uncertainty $\sim 10-20\%$
- SQCD and EW effects accurately included using effective Lagrangian approach (Δm_b)
 - These may be large

Easier experimentally: bH production

- 4 flavor number scheme
 NLO QCD
- 5 flavor number scheme
 NLO QCD [MCFM with top triangle removed]
 - SUSY QCD corrections
 - EW corrections

Consistent results for total cross sections

Compare Distributions: Single b Tag

• 4FNS vs 5FNS: Important differences

MSSM with $M_h=120$ GeV, tan $\beta=40$

Compare distributions: Single b tag

MSSM with $M_h=120$ GeV, tan $\beta=40$

Calculate SUSY QCD Corrections to bg→bh

• Approach 1: Improved Born Approximation (Δm_b)

$$g_{hbb} = \frac{m_b}{v_{SM}} \left(\frac{1}{1 + \Delta m_b}\right) \left(-\frac{\sin \alpha}{\cos \beta}\right) \left(1 - \frac{\Delta m_b}{\tan \beta \tan \alpha}\right) \qquad \sigma_{IBA} = \left(\frac{g_{hbb}}{g_{hbb}^{SM}}\right)^2 \sigma_{LO}$$

- Approach 2: $O(\alpha_s^2)$ NLO calculation
 - Use g_{hbb} as above, so subtract off double counting
 - Include all contributions from squark/gluino loops

Many contributions not included in IBA

h

 ϕ_i

h

Non-Decoupling of SQCD for Light SUSY $(pp \rightarrow bH)$

Improved Born Approximation fails for light SUSY particles

Dawson & Jackson, arXiv:0709.4519

Do Electroweak Corrections Matter?

- Lowest order rate for $bg \rightarrow bh$ vanishes for $m_b=0$
- At 1-loop, there are diagrams which do NOT vanish in m_b=0 limit
- Full EW calculation

Plus many more diagrams.....

Mrenna, Yuan, hep-ph/9507235

EW Corrections to $pp \rightarrow bh$ $\sigma(pp \to bH) = \sigma_0 \left(1 + \Delta_{OCD} + \Delta_{SQCD} + \Delta_{EW} \right)$

LHC ($E_{CM} = 10 \text{ TeV}$)

Improved Born Approximation captures weak corrections accurately

Dawson & Jaiswal, arXiv:1002.2672

EW corrections in large M_h limit

- Dominant contributions from bbh vertex
 - No contributions which grow with M_h from triangle or box diagrams

$$\sigma(bg \to bh) \approx \sigma_0 \left(1 + \frac{M_h^2}{32\pi v^2} \left[13 - 2\pi\sqrt{3} \right] \right)$$

Need log(M_h) pieces to reproduce full calculation
Corrections O(18%) for

M_h~1 TeV

Dawson & Jaiswal, arXiv:1002.2672 [hep-ph]

LHC Expectations

 $M_{\rm A}({\rm GeV})$

QCD and theory uncertainties will change this!

Conclusions

- Compatible answers in 4FNS and 5FNS for total cross sections
 - Distributions in single b tag case slightly different
- EW corrections important at large M_h
 - EW corrections for both 0 and 1 b tag can be included with effective Lagrangian
- SUSY QCD corrections can be important for light SUSY
 - For heavy SUSY can include SQCD in effective Lagrangian for single b tag
 - Effective Lagrangian works for all SUSY masses for 0 b tag
- Uncertainties from scheme dependence, PDFs, scale uncertainty significant